Globe Valves vs. Gate Valves
Globe Valves vs. Gate Valves
Gate valves and globe valves both serve important roles in applications that require control of liquid and media passing through industrial systems. As the most common valves used in industrial plants, they are often used in the same applications and are very similar in appearance, but they have different functionalities.
For more information, please visit our website.
It is important to understand these differences when deciding what valve type to use in your application. This article discusses the differences between and the purposes of each type of valve.
Globe Valves
At a glance, it is easy to understand why globe valves were named as such. Traditional globe valves closely resemble a globe. Belonging to the linear motion valve family, globe valves are primarily intended to start, stop, and regulate the flow of media. Most globe valves have a top-entry design, meaning you have to access the valves internal components from the top.
Globe valves provide a tight, efficient seal to limit the risk of leakage. They are suitable throttling valves because their seats are parallel to the media flow, preventing erosion of the seat when the valve is on. Globe valves experience high-pressure drops and are more resistant to media flow when the valve is turned on.
Applications that encounter high temperatures, high pressures, or highly viscous media call for globe valves. They are appropriate for applications that require a safe, leak-proof solution that resists corrosion. Due to their capabilities, globe valves are more costly than gate valves but are a worthwhile expense in certain applications.
Gate Valves
As part of the shutoff valve family, these linear valves feature a wedge-shaped gate and a rising or non-rising stem to indicate when the valve is open or closed. The primary function of gate valves is to isolate media by providing a tight seal to stop the flow. Unlike globe valves, they dont regulate the flow of media, but they can accommodate any flow direction.
Gate valves are ideal for applications that require tight sealing. Knife valves, a unique variety of gate valves, are suitable for viscous media. Gate valves are useful in wide variety of above- and below-ground applications and are suitable for all kinds of fluids, including gas and water.
Differences: Globe Valves vs. Gate Valves
Click to Expand
While they appear similar in design and can be used in similar ways, these two valves differ in functionality, structure, sealing capabilities, and application.
Some of the most distinct differences between globe valves and gate valves include the following:
- Performance/Functionality:
Globe valves are control valves, meaning they can start, stop, and regulate media, giving the operator full control media flow. The primary function of gate valves is to isolate media. Its design does not cater to flow control.
- Structure:
Globe valves and gate valves differ significantly in terms of structure. Globe valves tend to have a complicated structure with most of their components housed internally. Their design allows for a change in flow direction and obstruction, which promotes its throttling function. On the other hand, gate valves have a more simplistic structure. Their components are found on the upper part of the valve body, so they become hollow when the valve is open. Gate valves also have a non-rising or rising stem.
- Sealing surfaces:
Globe valves provide a superior seal to gate valves due to its internal valve core, which effectively seals globe valves. Gate valves only seal on the surface of the valve disc, creating a weaker seal.
- Application:
Because globe valves experience such drastic pressure changes, they are ideal for application that are unaffected by pressure drops. Gate valves are multidirectional, and they are suitable for applications that are more sensitive to drops in pressure.
Valve Solutions at RED-WHITE VALVE CORP.
Successful applications depend on choosing the right components to suit the job. At RED-WHITE VALVE CORP., we are committed to providing our customers with high-quality solutions that provide optimal system performance.
With over 50 years serving the commercial, industrial, HVAC, and plumbing industries, we have the expertise to help you find the right solution for your business. To learn more about our selection of globe and gate valves, contact us or request a quote today.
If you want to learn more, please visit our website kairuite.
Globe Valve vs Gate Valve
Globe Valve vs Gate Valve
Figure 1: Globe valve (left) and gate valve (right)
Despite their similarities at first inspection, globe and gate valves have significant differences that make each suitable for their applications. When choosing between these two valves for an application, understanding the application's pressure, sealing, and flow requirements can ensure the correct valve is selected. This article discusses the differences between globe and gate valves to allow an educated decision before choosing between the two valves.
Table of contents
Globe valve vs gate valve comparison
Globe valves and gate valves are multi-turn, linear motion valves, meaning both valves require multiple turns to open or close. The closing mechanism moves up and down in a straight line to turn open or close the valve. At this point, similarities between the valves begin to diminish.
The globe valve differs from most valves because its name derives from its body shape (rounded) rather than its disc, which is the gate valve's convention. Its disc moves up and down to allow or block the flow, similar to a gate. Read more on globe valves and gate valves to get a comprehensive understanding of both.
Flow properties
As seen in Figure 2, a gate valve is a straight-through, bi-directional valve, meaning its design permits flow directly through it in both directions. The only change to the flow occurs when the gate valve is closed, and the flow stops.
Figure 2: A gate valve flow properties when it is closed (left) and open (right).
A globe valve, on the other hand, has more turns for the flow path. As seen in Figure 3, the flow can take a z-shaped path (T- or Z-valve), an oblique path (Y-valve), or a 90° turn path (angle valve).
Because a globe valve diverts flow in a specific way, it has an inlet and an outlet port. Typically, an arrow on the outside of the valve's body will indicate the valve's flow direction. Also, the flow diversion causes a significant pressure drop through the globe valve. In contrast, a gate valve's pressure drop is nearly non-existent.
Figure 3: Globe valves' flow paths: T- or Z-valve (left), angle valve (center), and Y-valve (right)
Valve functions
Both gate valves and globe valves can operate as on/off valves. A gate valve is not meant to bused to throttle flow, but a globe valve can. Flow diverts within the globe valve and becomes parallel to the valve seat. This design makes globe valves efficient flow throttlers. Globe valves become unsuitable for throttling flow at larger diameters (above DN 150). Gate and globe valves can be operated mechanically, pneumatically, or electrically.
Note: With other factors equal, Y-valves are the least efficient at throttling flow because the valve seat is not parallel to the flow direction. However, this also means that Y-valves have the smallest pressure drop.
Visual differences
At a quick glance, gate valves and globe valves are not easy to tell apart. The following traits are what to look for to tell the difference:
- Body: Gate valves usually have a rectangular or wedge-shaped body. Whereas the body of a globe valve is rounder, especially at its bottom.
- Maximum height: Gate valves usually are higher when opened than globe valves.
- Flow direction indicator: Gate valves are bi-directional, whereas globe valves are unidirectional. A marker on the valve, such as an arrow, indicates the flow direction and that it's a globe valve.
Advantages and disadvantages chart
Globe and gate valves may have similar or different materials for their housing and seals. Read our chemical resistance guide to learn more about the advantages and disadvantages of the various materials. See the following chart to learn about more advantages and disadvantages.
Table 1: Globe valve and gate valve advantages and disadvantages chart
Globe valve Gate valve Application Used for flow regulation (e.g., cooling water systems and fuel oil systems) More suitable for slurry due to less space in the valve's body for sediment to get stuck and build up Flow control Can be used or on/off control and can throttle flow Can be used for on/off control and cannot regulate the flow Flow capacity Lower Higher Flow direction Unidirectional Bi-directional Flow restriction/pressure drop Flow diversion within the valve's body creates significant pressure drop Full-bore valve, meaning there is no reduction to flow and pressure drop is insignificant Power requirement Needs a large amount of force or an actuator to close under high pressure Needs less power to close under high pressure Operating conditions Can operate at higher temperatures Can operate at higher pressures Cost More expensive than a gate valve due to its complicated structure Cheaper Leakage More effective sealing because force is applied to the disc when closed Good sealing properties Installation space Takes up less vertical space, but requires more horizontal space If a rising-stem style, needs more vertical space, but less horizontal space Weight Heavier Lighter Ports Can have a 3-port configuration for straight-through flow Two portsSelecting between globe valves and gate valves
Gate valves and globe valves are both excellent shut-off valves. However, when choosing between them, neither valve will outperform the other in every single application. Consider the following factors:
- Flow control: Select a globe valve if an application requires flow modulation.
- Flow capacity: Choose a gate valve if an application demands high flow.
- Flow direction: Choose a gate valve if an application requires bi-directional flow.
- Pressure drop: Select a gate valve if a minimal pressure drop is necessary.
- Sealing: If an application demands excellent sealing, select a globe valve.
- Contaminated media: Choose a gate valve if an application has slurry or other contaminated media.
The above variables are typically the most important when selecting a shut-off valve. Refer to Table 1 for further information.
Example applications
Globe valves
- Cooling water systems: Globe valves operate in cooling water systems by controlling the water flow to maintain a desired temperature.
- Chemical injection systems: Globe valves work well in industrial systems that need control over chemicals into reaction vessels or process streams.
Gate valves
- Bulk material handling systems: Heavy-duty processes (e.g., mining, agriculture, and construction) use gate valves to control the flow of bulk materials such as grains, coal, and aggregate.
- Water distribution systems: Many components of a water distribution system do not require precise flow control. Therefore, gate valves are suitable because they either block or allow flow.
FAQs
Which is better? A gate valve or a globe valve?
Globe valves have better sealing than gate valves and last longer. However, gate valves have significantly lower pressure drop.
Additional reading:Casing Spools
What is the advantage of gate valves over globe valves?
Unlocking the Potential: Key Questions to Consider When Ordering a 24" Cryogenic Top Entry Ball Valve
How does an expanding gate valve work?
One significant advantage of gate valves over globe valves is that they require significantly less power to close since they close perpendicular to flow rather than parallel as globe valves do.
Globe Valves vs. Gate Valves
Gate valves and globe valves both serve important roles in applications that require control of liquid and media passing through industrial systems. As the most common valves used in industrial plants, they are often used in the same applications and are very similar in appearance, but they have different functionalities.
It is important to understand these differences when deciding what valve type to use in your application. This article discusses the differences between and the purposes of each type of valve.
Globe Valves
At a glance, it is easy to understand why globe valves were named as such. Traditional globe valves closely resemble a globe. Belonging to the linear motion valve family, globe valves are primarily intended to start, stop, and regulate the flow of media. Most globe valves have a top-entry design, meaning you have to access the valves internal components from the top.
Globe valves provide a tight, efficient seal to limit the risk of leakage. They are suitable throttling valves because their seats are parallel to the media flow, preventing erosion of the seat when the valve is on. Globe valves experience high-pressure drops and are more resistant to media flow when the valve is turned on.
Applications that encounter high temperatures, high pressures, or highly viscous media call for globe valves. They are appropriate for applications that require a safe, leak-proof solution that resists corrosion. Due to their capabilities, globe valves are more costly than gate valves but are a worthwhile expense in certain applications.
Gate Valves
As part of the shutoff valve family, these linear valves feature a wedge-shaped gate and a rising or non-rising stem to indicate when the valve is open or closed. The primary function of gate valves is to isolate media by providing a tight seal to stop the flow. Unlike globe valves, they dont regulate the flow of media, but they can accommodate any flow direction.
Gate valves are ideal for applications that require tight sealing. Knife valves, a unique variety of gate valves, are suitable for viscous media. Gate valves are useful in wide variety of above- and below-ground applications and are suitable for all kinds of fluids, including gas and water.
Differences: Globe Valves vs. Gate Valves
Click to Expand
While they appear similar in design and can be used in similar ways, these two valves differ in functionality, structure, sealing capabilities, and application.
Some of the most distinct differences between globe valves and gate valves include the following:
- Performance/Functionality:
Globe valves are control valves, meaning they can start, stop, and regulate media, giving the operator full control media flow. The primary function of gate valves is to isolate media. Its design does not cater to flow control.
- Structure:
Globe valves and gate valves differ significantly in terms of structure. Globe valves tend to have a complicated structure with most of their components housed internally. Their design allows for a change in flow direction and obstruction, which promotes its throttling function. On the other hand, gate valves have a more simplistic structure. Their components are found on the upper part of the valve body, so they become hollow when the valve is open. Gate valves also have a non-rising or rising stem.
- Sealing surfaces:
Globe valves provide a superior seal to gate valves due to its internal valve core, which effectively seals globe valves. Gate valves only seal on the surface of the valve disc, creating a weaker seal.
- Application:
Because globe valves experience such drastic pressure changes, they are ideal for application that are unaffected by pressure drops. Gate valves are multidirectional, and they are suitable for applications that are more sensitive to drops in pressure.
Valve Solutions at RED-WHITE VALVE CORP.
Successful applications depend on choosing the right components to suit the job. At RED-WHITE VALVE CORP., we are committed to providing our customers with high-quality solutions that provide optimal system performance.
With over 50 years serving the commercial, industrial, HVAC, and plumbing industries, we have the expertise to help you find the right solution for your business. To learn more about our selection of globe and gate valves, contact us or request a quote today.
Globe Valve vs Gate Valve
Globe Valve vs Gate Valve
Figure 1: Globe valve (left) and gate valve (right)
Despite their similarities at first inspection, globe and gate valves have significant differences that make each suitable for their applications. When choosing between these two valves for an application, understanding the application's pressure, sealing, and flow requirements can ensure the correct valve is selected. This article discusses the differences between globe and gate valves to allow an educated decision before choosing between the two valves.
Table of contents
Globe valve vs gate valve comparison
Globe valves and gate valves are multi-turn, linear motion valves, meaning both valves require multiple turns to open or close. The closing mechanism moves up and down in a straight line to turn open or close the valve. At this point, similarities between the valves begin to diminish.
The globe valve differs from most valves because its name derives from its body shape (rounded) rather than its disc, which is the gate valve's convention. Its disc moves up and down to allow or block the flow, similar to a gate. Read more on globe valves and gate valves to get a comprehensive understanding of both.
Flow properties
As seen in Figure 2, a gate valve is a straight-through, bi-directional valve, meaning its design permits flow directly through it in both directions. The only change to the flow occurs when the gate valve is closed, and the flow stops.
Figure 2: A gate valve flow properties when it is closed (left) and open (right).
A globe valve, on the other hand, has more turns for the flow path. As seen in Figure 3, the flow can take a z-shaped path (T- or Z-valve), an oblique path (Y-valve), or a 90° turn path (angle valve).
Because a globe valve diverts flow in a specific way, it has an inlet and an outlet port. Typically, an arrow on the outside of the valve's body will indicate the valve's flow direction. Also, the flow diversion causes a significant pressure drop through the globe valve. In contrast, a gate valve's pressure drop is nearly non-existent.
Figure 3: Globe valves' flow paths: T- or Z-valve (left), angle valve (center), and Y-valve (right)
Valve functions
Both gate valves and globe valves can operate as on/off valves. A gate valve is not meant to bused to throttle flow, but a globe valve can. Flow diverts within the globe valve and becomes parallel to the valve seat. This design makes globe valves efficient flow throttlers. Globe valves become unsuitable for throttling flow at larger diameters (above DN 150). Gate and globe valves can be operated mechanically, pneumatically, or electrically.
Note: With other factors equal, Y-valves are the least efficient at throttling flow because the valve seat is not parallel to the flow direction. However, this also means that Y-valves have the smallest pressure drop.
Visual differences
At a quick glance, gate valves and globe valves are not easy to tell apart. The following traits are what to look for to tell the difference:
- Body: Gate valves usually have a rectangular or wedge-shaped body. Whereas the body of a globe valve is rounder, especially at its bottom.
- Maximum height: Gate valves usually are higher when opened than globe valves.
- Flow direction indicator: Gate valves are bi-directional, whereas globe valves are unidirectional. A marker on the valve, such as an arrow, indicates the flow direction and that it's a globe valve.
Advantages and disadvantages chart
Globe and gate valves may have similar or different materials for their housing and seals. Read our chemical resistance guide to learn more about the advantages and disadvantages of the various materials. See the following chart to learn about more advantages and disadvantages.
Table 1: Globe valve and gate valve advantages and disadvantages chart
Globe valve Gate valve Application Used for flow regulation (e.g., cooling water systems and fuel oil systems) More suitable for slurry due to less space in the valve's body for sediment to get stuck and build up Flow control Can be used or on/off control and can throttle flow Can be used for on/off control and cannot regulate the flow Flow capacity Lower Higher Flow direction Unidirectional Bi-directional Flow restriction/pressure drop Flow diversion within the valve's body creates significant pressure drop Full-bore valve, meaning there is no reduction to flow and pressure drop is insignificant Power requirement Needs a large amount of force or an actuator to close under high pressure Needs less power to close under high pressure Operating conditions Can operate at higher temperatures Can operate at higher pressures Cost More expensive than a gate valve due to its complicated structure Cheaper Leakage More effective sealing because force is applied to the disc when closed Good sealing properties Installation space Takes up less vertical space, but requires more horizontal space If a rising-stem style, needs more vertical space, but less horizontal space Weight Heavier Lighter Ports Can have a 3-port configuration for straight-through flow Two portsSelecting between globe valves and gate valves
Gate valves and globe valves are both excellent shut-off valves. However, when choosing between them, neither valve will outperform the other in every single application. Consider the following factors:
- Flow control: Select a globe valve if an application requires flow modulation.
- Flow capacity: Choose a gate valve if an application demands high flow.
- Flow direction: Choose a gate valve if an application requires bi-directional flow.
- Pressure drop: Select a gate valve if a minimal pressure drop is necessary.
- Sealing: If an application demands excellent sealing, select a globe valve.
- Contaminated media: Choose a gate valve if an application has slurry or other contaminated media.
The above variables are typically the most important when selecting a shut-off valve. Refer to Table 1 for further information.
Example applications
Globe valves
- Cooling water systems: Globe valves operate in cooling water systems by controlling the water flow to maintain a desired temperature.
- Chemical injection systems: Globe valves work well in industrial systems that need control over chemicals into reaction vessels or process streams.
Gate valves
- Bulk material handling systems: Heavy-duty processes (e.g., mining, agriculture, and construction) use gate valves to control the flow of bulk materials such as grains, coal, and aggregate.
- Water distribution systems: Many components of a water distribution system do not require precise flow control. Therefore, gate valves are suitable because they either block or allow flow.
FAQs
Which is better? A gate valve or a globe valve?
Globe valves have better sealing than gate valves and last longer. However, gate valves have significantly lower pressure drop.
What is the advantage of gate valves over globe valves?
One significant advantage of gate valves over globe valves is that they require significantly less power to close since they close perpendicular to flow rather than parallel as globe valves do.
- Previous: Casing Spools
- Next: How Does Butterfly Valve Price Markdowns Work?
- 0