Your Position: Home > Machinery > Why is Magnetic Pump Filling Machine Better?
Guest Posts

Why is Magnetic Pump Filling Machine Better?

Author:

sufeifei

Dec. 02, 2024
  • 0
  • 0

Magnetic coupling - Wikipedia

A magnetic coupling is a component which transfers torque from one shaft to another using a magnetic field, rather than a physical mechanical connection. They are also known as magnetic drive couplings, magnetic shaft couplings, or magnetic disc couplings.

For more information, please visit our website.

Magnetic coupling

Magnetic couplings allow a physical separation between input and output shafts, precluding the use of shaft seals, which eventually wear out and fail from the sliding of two surfaces against each another. Magnetic couplings are also used for ease of maintenance on systems that require precise alignment, since they allow a greater off-axis error between the motor and driven shaft than physical couplings.

Magnetic couplings are most often used for liquid pumps, propeller systems, mine motors, conveyor belt motors and kiln elevators.

Applications

[

edit

]

Some diver propulsion vehicles and remotely operated underwater vehicles use magnetic couplings to transfer torque from the electric motor to the prop. Magnetic gearing is also being explored for use in utility-scale wind turbines as a means of enhancing reliability.[1] The magnetic coupling has several advantages over a traditional stuffing box.[2][3]

Some aquariums use magnetic drive pumps, which have a magnetic coupling between the motor on the dry side of an aquarium wall and the propeller or impeller in the water on the other side of the wall.[4] This coupling features two face-to-face magnetized disks: the driving magnet on the dry side, and the driven magnet on the underwater side. Torque is transferred by shear forces between the attracting magnetic disks,[5] but this attraction can also produce an axial load as the disks pull on each other. There are two main designs for the magnetic pattern on each disk. One design minimizes the axial load by counterbalancing a magnetically attractive section with a magnetically repulsive section near the axis.[6][5] The other design maximizes torque and resists the consequential axial load with a mechanical thrust bearing.

A magnetic stirrer is another example of magnetic coupling.

Magnetic couplings are often synchronous, meaning the output shaft speed equals input shaft speed (a 1:1 ratio).[according to whom?]

The first few gears in the geartrain of an Omega Megasonic wristwatch have no teeth; instead, magnetic north and south poles on neighboring gears act like the teeth and trough of spur gears, allowing each gear to drive the next gear in the chain.[7] Such magnetic gears, like spur gears, always have gear ratios consisting of small integers.

More sophisticated magnetic gearings use pole pieces to modulate the magnetic field. They can be designed to have gear ratios from 1.01:1 to :1.[8]

Features

[

edit

]

Magnetic couplings have some notable properties:[9]

No vibration

[

edit

]

Because there is no contact between the active part and the driven part of a magnetic coupling, and there is no rigid connection problem. Sudden changes and vibrations are not directly transferred across the coupling. Therefore, it can avoid the transmission of vibration, resulting in smoother mechanical operation.

Overload protection

[

edit

]

Magnetic couplings offer protection against overload during operation. If the load on the driven component becomes too large, the two parts may slip out of sync and end the transmission of torque. This avoids damage to the system, protecting both the motor from excessive loads and the driven component from deformation.

Additional reading:
Simplify Wafer Handling Machine Design with Modular ...
Flour Mill Business Plan with Costs | PINGLE
What size heat press do I need for T shirts?

If you want to learn more, please visit our website Mingfeng.

Easy maintenance

[

edit

]

A magnetic coupling transmission device is relatively simple in structure, and there is a gap between the driving part and the driven part, which is easy to install, disassemble, troubleshoot, and maintain.

Easy power transmission

[

edit

]

Magnetic couplings can transmit power via a linear motion, rotary motion, or helical compound motion (a combination of linear motion and rotary motion). The combination of these transmission methods and different mechanical geometry can realize a wide variety of orderly motion in three-dimensional space.

Safety

[

edit

]

Because magnetic couplings do not penetrate the surface they operate across, pumps that use this type of coupling can completely avoid leakage. This is particularly important if the pumped fluid or gas is corrosive, toxic, flammable, explosive, acidic, alkaline, or otherwise harmful. This makes magnetic coupling transmission technology especially applicable in the production of petroleum, chemicals, and pharmaceuticals, and in the industries of offshore oil well operations, non-ferrous metal smelting, wet mineral processing, and food processing.

See also

[

edit

]

References

[

edit

]

What are Magnetic Drive Pumps? Benefits and Disadvantages

What is a magnetic drive pump?

Magnetic drive pumps, also known as mag pumps, are a type of centrifugal pump where the motor is coupled to the pump body with magnets instead of a direct mechanical shaft. This removes the need for a traditional sealing mechanism which eliminates leaks and makes mag drive pumps common choices in handling hazardous or corrosive liquids.

Magnetic drive pumps are a good transfer solution with regards to leak prevention, maintenance requirements and the ability to handle corrosive, toxic, or flammable liquids. But much like standard centrifugal pumps, magnetic drive pumps are incompatible with many fluids. Furthermore, their magnetic mechanism can cause overheating and even alter the fluid&#;s composition. Electric diaphragm pumps address all of these issues while also providing more unique features to enhance the transfer process.

 

Disadvantages of magnetic drive pumps

While magnetic drive pumps eliminate the problems associated with mechanical seals, they have a number of limitations that make them less than ideal for a range of industrial applications. Graco solves this problem with QUANTM, an electric double diaphragm pump. Compared to a magnetic drive pump, QUANTM provides much more operational flexibility and control while solving many of the common issues associated with mag drive pumps.

  • Unsatisfactory solution for abrasives and solids
    Magnetic drive pumps are primarily designed for pumping clean liquids that do not contain solids. Solids in the transfer material can cause quick failure of the close tolerance sleeve bearings and thrust surfaces inside the pump. These issues interfere with the pump&#;s performance and will accumulate, eventually causing complete failures of the pump and motor drive. Although some magnetic drive pumps are capable of moving heavier or more viscous fluids, they are best for applications that need to transport clean, low viscosity fluids. Ideally, they are not used for heavier applications that process solids containing fluids such as sludges, slurries and blends. QUANTM pumps are well suited to applications with varying flow and pressure. It poses no risk for shear-sensitive liquids and can easily handle abrasives and solids.
  • Narrow preferred operating range and best efficiency point
    Magnetic drive pumps are just like their cousin, the centrifugal pumps, in that they have a specific impeller diameter, which means they only operate at optimal efficiency at a specific flow. And just like centrifugal pumps, the operating range is narrow. Not only will moving outside the preferred range significantly reduce the pump&#;s efficiency, but eventually, it causes cavitation, vibration, impeller damage, suction and discharge recirculation, or reduced bearing and seal life.
  • Deposit because of magnet overheating
    The coupling action of the magnets can generate a lot of heat. Heat given off by surfaces warms the liquid in the pump and is passed into the process.  If the material is not evacuated efficiently, the heat may rise enough to bake constituents of the process liquid into the impeller magnet hub, resulting in build-up of a deposit and eventually catastrophic failure of the pump itself. Furthermore, the magnets in a magnetic drive pump can demagnetize when exposed to temperatures above their upper limit. Dry-running mag-drive pumps exacerbate and speeds up these types of premature failures in the pump system.
  • Sensitivity in low flow or near shut-off head conditions
    Magnetic drive pumps are extremely sensitive when in low flow operation or near shut-off head conditions because the impeller is working against a higher head pressure. The magnetic coupling breakaway torque should not be exceeded. If this does occur, the magnetic coupling between the drive and the impeller axis is lost, causing the impeller to stop spinning, and damaging the pump or system.
  • Sensitivity to variations in viscosity during operation
    Liquids can vary in viscosity based on temperature or chemical reactions. The viscosity of the pumped fluid affects the required input power and magnetic torque required for transfer. All magnetic couplings are rated for a maximum torque; beyond this point, the magnets operate at reduced speeds (decoupling). Operation in this state can permanently de-magnetize the magnets, making these pumps especially vulnerable to variable operating conditions and resulting in high power demands. The integration of power monitors into the process should be included in the total investment cost for this type of pump.
  • Not self-priming
    Most centrifugal pumps are not self-priming. For the pump to work properly, its casing must be filled with liquid before start-up. When the casing fills with vapors or gases, the pump impeller becomes gas-bound and incapable of pumping. To make sure the pump remains primed and does not become gas-bound, centrifugal pumps need to be installed below the fluid level from which the pump takes its suction. Alternatively, the pump can be primed by supplying liquid under pressure through another pump placed in the suction line. QUANTM is self-priming and has excellent suction capabilities. With the added control of integrating an electric motor, every QUANTM pump includes a built-in AutoPrime feature for difficult to prime applications.
  • Unable to run dry
    Because the pumped liquid acts as a lubricant and coolant, in the event of running dry, the bearing and some other pump head parts will overheat and eventually become damaged. They will then require service or replacement. Magnetic drive pumps should not be used in services and applications with a risk of running dry. QUANTM pumps can run dry indefinitely without causing any damage to the system, avoiding costly repairs.

Magnetic drive pump applications

  • Chemical Industry
    While magnetic drive pumps are a common choice in the chemical industry for their leak-proof and seal-less design, QUANTM electric diaphragm pumps offer additional benefits. With the ability to handle a wider range of viscosities and being able to run dry, this makes them much more reliable for the continuous, demanding operation required in the chemical processing industry.
  • Pharmaceutical Industry
    Magnetic drive pumps are frequently used in the pharmaceutical industry for transferring delicate fluids and medications. The sealed design helps to ensure product integrity and prevent contamination. QUANTM takes things a step further with its gentle pumping action to maintain the integrity of sensitive fluids without shear, which is important in the production of medications.
  • Food and Beverage Industry
    Magnetic drive pumps are widely used for food and beverage processing applications. They provide a gentle handling of liquids, such as dairy products, beverages, and sauces. QUANTM pumps are designed to transfer shear-sensitive materials like dairy and sauces without altering their consistency or quality, going beyond the capabilities of mag drive pumps. They can also run dry without damaging the pump, which is a big advantage during food processing. The easy cleaning of QUANTM pumps also helps ensure the high hygienic needs of the food industry are met while still offering efficiency and reliability.

Summary of mag drive pumps vs electric diaphragm pumps

These are the QUANTM electric double diaphragm (EODD) pump benefits at a glance:

Contact us to discuss your requirements of Magnetic Pump Filling Machine. Our experienced sales team can help you identify the options that best suit your needs.

Comments

0/2000

Get in Touch